Tuesday, November 23, 2010

Multivibrators



A multivibrator is an electronic circuit used to implement a variety of simple two-state systems such as oscillators, timers and flip-flops. It is characterized by two amplifying devices (transistors, electron tubes or other devices) cross-coupled by resistors and capacitors.

There are three types of multivibrator circuit:

astable, in which the circuit is not stable in either state—it continuously oscillates from one state to the other. Due to this, it does not require an input (Clock pulse or other).
monostable, in which one of the states is stable, but the other is not—the circuit will flip into the unstable state for a determined period, but will eventually return to the stable state. Such a circuit is useful for creating a timing period of fixed duration in response to some external event. This circuit is also known as a one shot. A common application is in eliminating switch bounce.
bistable, in which the circuit will remain in either state indefinitely. The circuit can be flipped from one state to the other by an external event or trigger. Such a circuit is important as the fundamental building block of a register or memory device. This circuit is also known as a latch or a flip-flop.
In its simplest form the multivibrator circuit consists of two cross-coupled transistors. Using resistor-capacitor networks within the circuit to define the time periods of the unstable states, the various types may be implemented. Multivibrators find applications in a variety of systems where square waves or timed intervals are required. Simple circuits tend to be inaccurate since many factors affect their timing, so they are rarely used where very high precision is required.

Before the advent of low-cost integrated circuits, chains of multivibrators found use as frequency dividers. A free-running multivibrator with a frequency of one-half to one-tenth of the reference frequency would accurately lock to the reference frequency. This technique was used in early electronic organs, to keep notes of different octaves accurately in tune. Other applications included early television systems, where the various line and frame frequencies were kept synchronized by pulses included in the video signal.

Remember to visit http://www.preher-tech.com/

Tuesday, November 16, 2010

Logic Gates


A logic gate performs a logical operation on one or more logic inputs and produces a single logic output. The logic is called Boolean logic and is most commonly found in digital circuits. Logic gates are primarily implemented electronically using diodes or transistors, but can also be constructed using electromagnetic relays (relay logic), fluidic logic, pneumatic logic, optics, molecules, or even mechanical elements.
*
Click here to read more from the Wikipedia
*
Click here to download a PDF that covers basic logic gates and there operation.
*
Remember to visit http://www.preher-tech.com/

Tuesday, November 9, 2010

Operational Amplifiers



An Operational amplifier ("op-amp") is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output. An op-amp produces an output voltage that is typically hundreds of thousands times larger than the voltage difference between its input terminals.
Operational amplifiers are important building blocks for a wide range of electronic circuits. They had their origins in analog computers where they were used in many linear, non-linear and frequency-dependent circuits. Their popularity in circuit design largely stems from the fact that the characteristics of the final elements (such as their gain) are set by external components with little dependence on temperature changes and manufacturing variations in the op-amp itself.

If you are interested in reading more about op-amps I suggest downloading this 464 page PDF from Texas Instruments, "Op Amps For Everyone" , click here to download.
*
You can also purchase the most current version of "Op Amps For Everyone" by clicking on the picture below.


For basic information on op-amps click here and here
*
More books on op-amps:



Remember to visit http://www.preher-tech.com/

Saturday, November 6, 2010

Make Your Own Ring Tester


In this post I will share with you all the info you will need to make a homemade ring tester also called a FBT/LOPT tester, note FBT= Fly Back Transformer, LOPT= Line Output Transformer.
Although originally designed to test flyback transformers this tool is used more often today for checking the primary winding of SMPS transformers for shorted windings and also the primary and secondary windings of high voltage transformers found in inverter circuits along with other high Q inductive components.

Click here for the assembly manual for the original dick smith ring tester which is no longer in production. This manual includes a schematic and a parts list.
Below are some pictures of the beautiful ring tester my good friend Behzad made using the schematic and parts list from the included assembly manual.






Remember to visit www.preherservices

Monday, November 1, 2010

Testing Semiconductors



Click here to go to Samuel M. Goldwasser's webpage "Basic Testing of Semiconductor Devices" and learn his listed methods for testing diodes, transistors, darlington transistors, TRIACs, DIACs, digital transistors, SCRs and more.


Also come visit www.preher-tech.com for all kinds of electronics information.

The TRIAC



TRIAC, from Triode for Alternating Current, is a genericized tradename for an electronic component which can conduct current in either direction when it is triggered (turned on), and is formaly named as bidirectional triode thyristor or bilateral triode thyristor.

A TRIAC is approximately equivalent to two complementary unilateral thyristors (one is anode triggered and another is cathode triggered SCR) joined in inverse parallel (paralleled but with the polarity reversed) and with their gates connected together. It can be triggered by either a positive or a negative voltage being applied to its gate electrode (with respect to A1, otherwise known as MT1). Once triggered, the device continues to conduct until the current through it drops below a certain threshold value, the holding current, such as at the end of a half-cycle of alternating current (AC) mains power. This makes the TRIAC a very convenient switch for AC circuits, allowing the control of very large power flows with milliampere-scale control currents. In addition, applying a trigger pulse at a controllable point in an AC cycle allows one to control the percentage of current that flows through the TRIAC to the load.

Click here to read more about TRIACs

Remeber to visit www.preher-tech.com

The DIAC



The DIAC, or 'diode for alternating current', is a trigger diode that conducts current only after its breakdown voltage has been reached momentarily.

When this occurs, diode enters the region of negative dynamic resistance, leading to a decrease in the voltage drop across the diode and, usually, a sharp increase in current through the diode. The diode remains "in conduction" until the current through it drops below a value characteristic for the device, called the holding current. Below this value, the diode switches back to its high-resistance (non-conducting) state. This behavior is bidirectional, meaning typically the same for both directions of current.

Most DIACs have a three-layer structure with breakdown voltage around 30 V. In this way, their behavior is somewhat similar to (but much more precisely controlled and taking place at lower voltages than) a neon lamp.

DIACs have no gate electrode, unlike some other thyristors that they are commonly used to trigger, such as TRIACs. Some TRIACs contain a built-in DIAC in series with the TRIAC's "gate" terminal for this purpose.

DIACs are also called symmetrical trigger diodes due to the symmetry of their characteristic curve. Because DIACs are bidirectional devices, their terminals are not labeled as anode and cathode but as A1 and A2 or MT1 ("Main Terminal") and MT2.

Click here to read more about DIACs


Visit www.preher-tech.com for more electronics information.